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The paper aims to elucidate the current status of the problem concerning the existence 
and observation of superfluid and superconducting states in the universe, that is, under 
cosmic conditions. Following an introduction, the paper discusses Bose-Einstein 
condensation, superftuidity, and superconductivity; possibilities for the occurrence of 
superfluidity and superconductivity under cosmic conditions; superconductivity 
of dense, degenerate electron plasma (large planets, white dwarfs); superfluidity and 
superconductivity in neutron stars; and finally superfluidity in a cosmological neutrino 
"sea." 
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1. I N T R O D U C T I O N  

The p h e n o m e n a  o f  superfluidi ty and  superconduct iv i ty  were discovered in the 

l abo ra to ry  and have not  yet  been observed on the ear th  under  na tura l  condi t ions .  
This c i rcumstance  is quite unders t andab le  because for  all known substances super-  
f luidity and  superconduct iv i ty  can occur  only at  r a the r  low temperatures .  

Liquid  hel ium (the He 4 isotope)  becomes superfluid for  T ~< Ta,  where 
T~ = 2.17~ is the t empera tu re  o f  the A-transit ion f rom He I to He II. In  add i t ion  
to He% superfluidi ty is observed for  solut ions  of  He  8 in He% but  again  only at  a low 
tempera tu re  (when He a is added  to He 4 the t empera tu re  o f  the A-transit ion drops) .  
Pure He  a would  p resumably  become superfluid only at  a t empera tu re  cons iderab ly  
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of the paper's obvious importance. 
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closer still to absolute zero (at T < 0.01~ At comparatively high temperatures, 
so far as is known, the only hope for observing superfluidity under terrestrial con- 
ditions would be in the case of an "exciton fluid" in semiconductors. (1) But such a 
"fluid" would be extremely short-lived, since its electron and hole components would 
annihilate, for example, with the radiation of light. Thus one could hardly expect to 
observe it without specially designed equipment. 

Superconductivity has been detected in a very large number of metals and alloys, 
but in all known cases the critical temperature T~ (for T > T~ the material is no longer 
superconducting) does not exceed 21~ In principle, the production of high- 
temperature superconductors would be possible, or at any rate cannot be excluded. (2) 
This, however, is quite another question. Here we merely wish to emphasize that 
superfluidity and superconductivity have thus far been detected only in the range of  
low temperatures, which must be established artificially. 

A natural question arises: might superfluidity and superconductivity exist away 
from the earth? There are certainly regions in the universe where the temperature 
is very low; but the temperature will ordinarily be higher than some tens of degrees, 
or at least several degrees, Kelvin. Most important, there is no reason to expect 
droplets of liquid helium to exist in space, nor in most situations any superconducting 
bodies or particles. In view of this circumstance as well as entirely independently, 
the problem of detecting superfluidity and superconductivity in the universe takes 
a completely different form: might superfluid or superconducting states of new, 
or properly, of "nonterrestrial" types and for "nonterrestrial" substances exist 
under cosmic conditions ? 

This question is in fact being discussed for several years, and it gradually became 
clear that the problem of superfluidity and superconductivity in the universe is not 
merely a theoretical curiosity but is actually of genuine astrophysical interest. We 
shall attempt below to elucidate the current status of the problem. 

2. B O S E - E I N S T E I N  C O N D E N S A T I O N ,  SUPERFLUID ITY ,  A N D  
S U P E R C O N D U C T I V I T Y  

"In the beginning there was an ideal Bose gas," or "'in the beginning there was a 
Bose-Einstein condensation"--such epigraphs would be perfectly appropriate in 
books dealing with the theory of superfluidity and superconductivity. In fact, although 
at one time there was some doubt, it has now become sufficiently clear that Bose- 
Einstein condensation does represent the basis of the superfluidity and superconduc- 
tivity phenomena (at any rate this claim applies to known and investigated cases). 

We may recall that the total number N of particles in an ideal Bose gas occupying 
the volume V is given (see, for example, Reference 3) by 

gVma/2 foo ale dE 
N -  21/27r2h 3 o -e(E-")/kr-- 1 (1) 

Here E = p2/2m is the energy of a nonrelativistic particle, g is the statistical weight 
(g = 2S -? 1, where S is the spin), and/z  is the chemical potential. 
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I f  the condition 

N (  h ]3/2 
V \ ~ }  ~ 1 (2) 

is satisfied, the behavior of the Bose gas will not differ from the classical case; that is, 
Boltzmann statistics will be valid. But if the inequality (2) is violated, the pressure of  
the Bose gas will become lower than the pressure of  a classical gas, corresponding to 
a certain attraction between the particles resulting from the quantum-mechanical 
exchange effect. I f  the temperature drops still further, so that the violation of the 
condition (2) becomes even stronger, Bose-Einstein condensation will set in. 

For  a given particle concentration n = N/V, Eq. (1) will determine the chemical 
potential/z, and as is readily seen the potential/x for a Bose gas will always be negative 
or zero, because of the positive value of the quantity N/V. We will have /~ = 0 if 
[Eq. (1), with the substitution E/kT  = z] 

U _ g(mkTo)3/~ foo %/zdz 
n ~ V 21/2rr2h3 0 e~- -  1 (3) 

From this equation we can determine the temperature of the Bose-Einstein conden- 
sation: 

3.31 h 2 (_~_~)2/3 
T o -  g2/3 mk (4) 

I f  T < To, Eq. (1) has no negative solutions for /z ;  this is due to the inapplicability 
of Eq. (1) under conditions where particles accumulate on the lower level with energy 
E = 0. But as T--+ 0 all the particles in an ideal Bose gas should be concentrated 
on just this lower level. For temperatures T > To the lower level plays no significant 
role, but for T < To the macroscopically large number of particles 

N(T) ~ N(E = 0) = N[1 - -  (T/To) 3/'~] (5) 

will be found on the lower level E = 0. At the same time the remaining particles will 
be located on all the other levels having E > 0, with the populations 

N(E > O) = N -  N(E = O) = N(T/To)3/2 

gV(mkr)3/~ f| ~/~ dz 
21/zrr~h 3 e ~ - -  1 (6) 

0 

Thus for T ~< T O Bose-Einstein condensation will take place-- the accumulation of  
a finite (not an infinitesimal) portion of the particles in an ideal Bose gas on the lower 
level with energy E = 0 and momentum p = 0. In other words, one may say that in 
an ideal Bose gas with T ~< To the particle distribution function with respect to 
momentum will have the form 

N(p) = N(T) ~(p) +y(p)  
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where N(T)  is given by Eq. (5), ~ represents the delta-function, andf (p)  is some smooth 

function of p or, more accurately, of  the quantity p = ~ / fmE.  
How will interaction between the particles, that is, the transition to a nonideal 

Bose gas or fluid, influence the Bose-Einstein condensation? Logically it would be 
possible for the level with p = 0 to cease to be a distinguished level in the presence of 
interaction, even for T = 0. Generally speaking, however, one finds that this is not 
the case: the influence of interaction, at any rate so long as it remains weak, will lead 
to a decrease in the number of  particles having zero momentum, but as before for 
T < To (where To represents some temperature of the condensation or the transition) 
the particle distribution function will have the form 

N(p) = N(T)~(p) + f ( p )  (7) 

However, if in an ideal gas N ( T  = O) = N, then in the presence of interaction we will 
have 0 < N ( T  = O) < N, where N is the total number of  particles. For  a sufficiently 
strong interaction, corresponding to attraction at large distances, the gas cannot be 
cooled to the condensation temperature To, for it will previously have been converted 
into a liquid or a solid body. A single-component solid body such as solid helium 
or, say, solid neon, cannot of  course be superfluid. Only helium remains liquid as 
T--+ 0 if the pressure is not too high. Liquid helium, if we are speaking of the H O  
isotope, will obey Bose statistics andwillbe superfluid throughout thetemperature range 
T < T o ~ Ta = 2.17~ Helium will remain liquid even at absolute zero 2 as a result 
of  the large zero-point vibrations of  light He atoms and since the interaction between 
atoms is at the same time comparatively weak. Both these factors apply equally to He ~ 
and to He 3. But liquid He 3 is not superfluid, at least at temperatures above 0.01~ 
From this fact alone it is natural to conclude that the superfluidity of  liquid He 4 is 
associated with the Bose statistics of  He 4 atoms, while He 3 atoms obey Fermi statistics. 
Moreover, a theoretical analysis indicates (we are, to be sure, speaking merely of  
estimates) that in luiquid H O  as T - +  0 about 1 0 ~  of all the particles will have a 
vanishing momentum. This result has not yet been established reliably by direct 
experiment, for example, on neutron scattering, but all the available theoretical and 
experimental data on liquid helium support this conclusion. Thus in a superfluid 
liquid, as in a Bose gas, N(T) ~ 0 in a relation such as Eq. (7). At the A-point, where 
T = Ta, we have N(Ta) = 0, and in a nonsuperfluid He I I  liquid, which exists in 
some temperature range T > Ta , N(T)  = O. 

There is no space here to dwell in further detail on the relation between Bose- 
Einstein condensation and the superfluidity phenomenon. One usually considers 
that superfluidity is possible only for N(T)  :z~ O, that is, if a macroscopic number of 
particles are present in the state with momentum p = 0 (Bose-Einstein condensation 
or condensation in momentum space). Nevertheless, the author should point out that 
he is not aware of  an entirely rigorous proof  of this assertion, nor of the conclusion 
that in any conceivable liquid of  Bose particles we always have N(0) :~ 0, that is, 

2 Here we are of course extrapolating the data referring to the region of very low but nonzero tem- 
peratures. No factors are as yet known that would prevent us from making such an extrapolation. 
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that Bose-Einstein condensation will occur. Furthermore, models can evidently be 
developed in which the situation is more complicated. (~) For the cases of  interest to 
us, however, there is clearly no reason to go beyond the scope of the ideas mentioned 
above, and we shall henceforth make the assumption, without special stipulation, that 
matter is superfluid if it remains liquid and if Bose-Einstein condensation takes 
place within it. 3 

The superconductivity phenomenon was long ago characterized as the super- 
fluidity of  an electron fluid in metals. However, the character of the relationship 
between the two effects "a t  the molecular level" remained unclear. It  was moreover 
fotmd that e/ectro~s obeying Fermi statistics can in no way participate in Bose- 
Einstein condensation. When the microscopic theory of superconductivity was 
developed in 1957 it nevertheless became evident that superconductivity is essentially 
a close ally of  Bose-Einstein condensation in a Bose gas. Indeed, if mutual attraction 
is present two electrons located near a Fermi surface and having opposite momenta  
and opposite spins will "adhere" in a pair with charge 2e and spin zero (the latter 
circumstance is in principle unimportant, since a "coupling" of electrons with parallel 
spins would also have led to the formation of a complex particle, a pair with integral 
spin). Such pairs, which are analogous to the atoms of positronium or to electron- 
hole pairs in semiconductors, 4 will, under conditions where they may be regarded as 
an individual particle (like an a-particle), obey Bose statistics and should undergo 
Bose-Einstein condensation. Thus superconductivity is associated with the Bose- 
Einstein condensation of electron pairs. The superfluidity of  such a system wilt be 
manifested as superconductivity because the pairs are charged, so that their flow will 
entail not only a transfer of  mass but a transfer of charge, that is, an electric current. 

As applied to actual metals, the concept of  Bose-Einstein condensation of electron 
pairs is a rather conventional one, as the diameter of  the pairs is considerably greater 
than the distance between them. But between the Bose-Einstein condensation of an 
ideal Bose gas and the transition to the superftuid state of  liquid He ~ the distance 
mentioned does not have a small value. In any event both the superfluidity of He I I  
and the superconductivity of  metals are based on the same phenomenon- -Bose-  
Einstein condensation. 

The formation of electron-electron pairs in a metal may at first glance seem a 
very strange and even an incomprehensible phenomenon. With the development of  
the microtheory of superconductivity (the theory of Bardeen, Cooper, and Schrieffer, 
or briefly the BCS theory; see References 5, 6), however, it was found that pair 
formation near a Fermi surface is by no means exotic. In the first place, two particles 
moving near a Fermi surface in a degenerate gas will form a bound state (will 
"adhere")  however weak the attraction between them. This result is analogous to the 

3 An ideal Bose gas would not be superfluid even though it may undergo Bose-Einstein condensation, 
because its flow would be unstable relative to the formation of "excitations" (in other words, the 
well-known Landau superfluidity criterion would not be satisfied in this case; see Sec. 67 of Reference 
3). But in an even slightly nonideal Bose gas, as Bogolyubov once showed, the Landau criterion 
will be satisfied for sufficiently small velocities of motion, and superftuidity will be possible. 

4 The main distinction is ~hat a pair of two electrons is charged, whereas a positronium atom and an 
electron-hole pair are neutral. 
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familiar fact that a bound level will exist in a two-dimensional potential well, no 
matter  how shallow (for further details regarding this analogy, see the author 's  
recent paper(2)). Secondly, electrons in a metal can attract each other if the distance 
between them falls within a certain range, because for a certain range of values of 
the frequency co and the wave vector q the dielectric constant E(co, q) in a metal is 
negative. To be specific, the negative contribution to e may arise from the influence 
of the crystal lattice, or in quantum language, it may be associated with phonon 
exchange. I t  is worth noting that, as has recently been pointed out, (7) a "coupling" 
of  electrons is also possible for repulsive forces provided they are equal to zero at the 
Fermi boundary itself. It  is then necessary to consider second-order processes leading 
to an effective attraction between electrons independently of  the sign of the interaction 
energy. This is just the situation in the well-known "jelly" model, (6,7) for which 

Here 

c(co, q) = i ~oz + q2 

• f  47rezZ2ni ~ /  4rre2Zn 
(~176 = " M - -  

is the plasma frequency for ions of  mass M, charge eZ ,  and concentration ni = n /Z ,  
with n the electron concentration. Furthermore ~:~ = 6rme2/EF ; EF is the Fermi energy 
and 1/• is the screening radius. The interaction between the electrons, if it is a 
first-order effect, is described by the Fourier components 

49Te 2 

V(o), q) - -  q2e(oj ' q) 

where hco and hq are the variations in the energy and momentum of an electron 
arising through phonon exchange. 

In  the original version of the BCS theory the simplest approximation was used, 
the electrons being regarded as attracted near the Fermi surface within a layer of  
thickness he% ~ EF,  with an effective interaction independent of  co and q (for further 
details, see References 5, 6): 

V(co, q) = - - V  > 0, co ~< oJ~ 
(s) 

V(~o, q) = 0, co > o)c 

The gap A ( T )  in the electron spectrum depends on the temperature and "closes" 
(disappears) at the critical temperature 

zl(0) . =  0e_Zlg ' g = N(0)-  V (9) 
T~ = 1.76k 

Here A(0) is the width of the gap for T = 0 (we note that an energy 2A must be lost 
in order for a pair to break up, since the energy A refers to a single electron), the 
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temperature 0 ~ t~coc/k, and for the phonon attraction mechanism 0 ~ 0D, where 0D 
is the Debye temperature for the given metal. Moreover V is the effective inter- 
action (8) and N o =~ N(Er )  is the density of the levels of electrons having a particular 
projection of their spin near the Fermi surface, that is, with energy EF.  We are 
speaking here of the normal state of the system; for free electrons 

E ~ - -  2m ' n - -  37r2 , 2 ~ E F  27r~h2 

In the BCS theory the constant g is not calculated. [Equation (9) is of course 
meaningful only for g > 0; if g < 0 the metal will not be superconducting even 
at obsolute zero.] It seems highly likely that we will always have g ~< 1, and for simple 
models g ~ �89 (see References 2 and 6, and the references cited there). However, for 
values g--~ �89 corresponding to strong binding, Eq. (9) is no longer accurate; 
it refers to the region of weak binding, where g ~ 1. In most cases the binding may 
be considered weak, and in any event this question will not be of importance in the 
sequel. We may therefore adopt the BCS equation (9), particularly since the para- 
meters 0 and g should be refined in any particular instance. 

The author has hoped that the present paper might be of interest to physicists 
and astrophysicists whose work is remote from the problems of low-temperature 
physics. For this reason it was thought opportune briefly to discuss above the relation 
between Bose-Einstein condensation, superfluidity, and superconductivity. From the 
stand-point of an analysis of the conditions for the superfluidity and superconductivity 
phenomena in space, it is particularly vital to stress that these phenomena can occur 
both for a collection of bosons and for a degenerate system of fermions under 
circumstances where interparticle attraction exists. 

3. P O S S I B I L I T I E S  FOR T H E  O C C U R R E N C E  O F  S U P E R F L U I D I T Y  A N D  
S U P E R C O N D U C T I V I T Y  U N D E R  C O S M I C  C O N D I T I O N S  

Apart from unstable particles, bosons may include certain nuclei, atoms and 
molecules, and also photons and gravitons (quanta of the gravitational field). 

With regard to the atomic and molecular bosons, it is recognized that they will 
form a solid body before Bose-Einstein condensation has set in. Liquid helium is an 
exception. In other words, we have nothing new here in comparison with the con- 
ditions in the terrestrial laboratory. Moreover, liquid helium in all likelihood is not 
to be found anywhere in the cosmos. 

For the atomic-nucleus bosons, however, the ""cosmic possibilities" are incom- 
parably wider than on the earth. At sufficiently high temperatures the nuclei will be 
freed from their electron shells and will form a heavy component of cosmic plasma, 
as for example in stellar interiors. The most interesting particles from this standpoint 
are helium nuclei, or c~-particles (we are referring to He4). For a gas of a-particles 
the characteristic temperature T o for condensation is given [see Eq. (4)] by 

ha 
To = 3.31 M.~-----k-p ~ / ~ / ~ , ~  ~ l lp  ~/~ ~ (10) 
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where MHe = 6.7 • 10 -~"4 g is the mass of  an c~-particle and p = MHeN/V is the gas 
density in grams per cubic centimeter. 

I f  the oL-particles in a stellar interior form a nonideal gas or liquid, then for 
T < Ta ~ To this system will be superfluid, or more accurately superconducting, 
because the transfer of  ~-particles will induce a current (the author first learned of 
this possibility from M. Ruderman). For the values of p and T < Ta considered here, 
however, the helium atoms must be virtually fully ionized, while on the other hand 
they must not form a crystal lattice. 5 

For a cool substance ionization will take place upon strong compression, and 
may be considered complete TM if 

/ m e  2 ~a 
P >~ [~)/x,M~ Z2 ~ 20Z 2 g/cm 3 (11) 

Here Z is the atomic number of  the nucleus, m is the mass of an electron, and/x~M~ 
is the mass of the material referred to a single electron, since p = nlxeM~, (n is the 
electron concentration and 3//, is the mass of a proton). For  helium we have 
p >~ 80 g/cm 3, and by Eq. (10), T o >~ 200~ 

On the other hand, material that is compressed sufficiently strongly will 
crystallize (8,9) and the melting temperature T,, will be determined by the condition 
kT~ = F~l(eZ)~/?i, where (4~r?iz/3) -1 = n~ is the ion concentration and /~m is a 
numerical parameter. Thus melting will set in when the kinetic energy k T  per degree 
of freedom of the oscillator i s / ' ~  times smaller than the Coulomb interaction energy 
eZ2/?~ of the nuclei. According to recent calculations (~~ for a simple plasma model, 
f ' , ,  = 170 ::k 10 and 

T~ ~ 103ZS/3p 1/3 ~ (12) 

where we have set p = 2ZM~n~ and My = 1.67 • 10 -z~ g is the mass of a proton; 
for Z = 2 we evidently have T,,~ ~ 3 • 10ap 1/a. Comparing the values of  To andT~ 
for helium, we see that To ~ Tm for p ~< 3 • 107 g/cm< Thus superfluidity pheno- 
mena can be expected only for densities p ~> 3 • 107 g/cm ~ [in which event, according 
to Eq. (10), T o ~> 106]. Such densities would be possible only in the central parts of  
white dwarfs having a mass close to the limiting mass Mcr ~ 1.2M| (for masses 
M > Mer a cool star will either be transformed into a neutron star or will collapse; 
see, for example, Reference 11). It  is evidently possible, then, for superconducting 
nuclei (specifically, He ~ nuclei) to appear in the central regions of  stars. The analysis 
that has been made, however, cannot be considered entirely convincing, and the 
problem is in need of further study. Nevertheless it would seem that the range of 
values of the parameters p and T for which superttuidity (superconductivity) is 

5 We further assume that no type of collective bound state of the c~-particles with the electrons is 
formed (see Reference 1). 
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possible would not in any event be appreciably extended. If this is indeed the case 
then He 4 nuclear superfluidity, to say nothing of that of other nuclei, could occur only 
in very rare cases. 

Of the remaining bosons we have finally to examine the possibility of Bose- 
Einstein condensation of photons and gravitons. At first sight the mere formulation 
of such a question might seem to involve a misunderstanding. In fact, photons and 
gravitons are always particles relativistic in the limit (rest mass equal to zero), and 
accordingly their number would not be conserved even in the low-temperature region. 
Hence in a state of thermodynamic equilibrium the chemical potential/x of a photon 
gas (that is, blackbody radiation) or a graviton gas would be equal to zero. Properly, 
it is from the condition/z = ( d F / d N ) r .  v z 0 that the Planck distribution is obtained. 
We therefore may not speak of an equilibrium Bose-Einstein condensation of photons 
or gravitions. It is perfectly legitimate, however, to inquire about Bose-Einstein 
condensation under conditions of incomplete equilibrium. For example, the excitons 
in a solid body live for only a finite time and then disappear because of transformation 
into radiation or an aggregate of phonons (for definiteness we have in mind excitons 
of the type of a bound electron-hole system). But if the time required to establish 
equilibrium and, in particular, condensation in a system of excitons is substantially 
shorter than the lifetime of the excitons, it will be entirely meaningful to speak of 
condensation and superfluidity in the exciton gas. (1) In just the same way, if the 
scattering of  photons plays a significantly greater part than the process of photon 
production and absorption, one could consider the Bose-Einstein condensation of 
photons. Free electrons can only scatter light; they cannot absorb or emit it. Thus 
scattering will make a particularly strong contribution in a rarefied electron plasma. 
Nevertheless, the absorption and emission of light that takes place when electrons 
collide with ions is also appreciable, and in general one cannot speak of any well- 
defined Bose-Einstein condensation. The interaction of gravitons with matter is very 
weak, and the problem of the establishment of equilibrium in a system of gravitons, 
as well as the influence of Bose statistics on this process, would probably be of interest 
only in models of an expanding universe when states of extremely high density are 
considered. 

In the case of bosons, then, superfluidity or superconductivity under cosmic 
conditions is practically impossible, except for the superconductivity of  nuclei in 
the interiors of white dwarfs. Accordingly, in connection with the topic of this paper 
we will be interested almost exclusively in superconductivity or superfluidity in 
Fermi systems, analogous to electron superconductivity in metals. The following 
actual possibilities obtain: 

1. Superconductivity could occur in the dense, degenerate, metallic-type electron 
plasma that exists in large planets such as Jupiter and Saturn, in white dwarf stars, 
and at the periphery of neutron stars. 

2. The neutron fluid representing the principal component of the material in 
neutron stars should be superfluid within a certain fairly wide density range. 
The proton fluid admixed with the neutron fluid might prove to be super- 
conducting. 
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3. One cannot entirely exclude the possibility of superfluidity in a neutrino 
" sea" - - a  degenerate gas of neutrinos that can exist in early evolutionary stages in 
certain cosmic models. 

We shall proceed to discuss all three of these cases. 

4. SUPERCONDUCTIV ITY  OF DENSE, DEGENERATE ELECTRON 
PLASMA (LARGE PLANETS, W H I T E  DWARFS) 

Under sufficiently strong compression, even at a temperature equal to zero 
(that is, as T - +  0), matter will be transformed into a metallic (conducting) state 
through collectivization of orbital (bound) electrons. In particular, if the condition (1 t) 
holds the material will certainly be metallized. It is very important here to note that 
as the density increases an electron gas will approach increasingly close to an ideal 
gas, so that a model of weakly bound electrons will be found more applicable than 
in ordinary metals. In fact, the zero-point (kinetic) energy of the electrons in a 
degenerate ideal Fermi gas will be 

h 2 h'Z 
K ~ ~ ~ --m n~l~ 

where n = iV /V  is the electron concentration; evidently in order of magnitude we have 

h~kF ~ mOF 2 _ (3zr2)~/3 ~ n2/3 
K ~ E F - -  2mm - -  -2 

At the same time the energy of Coulomb interaction between electrons will be 
U~, ~ e2/? ~ e2n 1/3, while the energy of interaction between an electron and a 
nucleus (of charge e Z )  will be U~i ~ Ze2 /~ i  ~ Z2/~e2nZ/a, where r~i ~ n~ ~/~ = (Z /n)  1/3. 

Evidently 

- -  (13) K ~ Z2/3 r,~ ~ Z~/8 e 2 m n - a / a  Z2/3 e2 
h ~ ~ hvF 

where the velocity at the Fermi surface is 

V v = ~ / ~ / m  = (3~2) 1/3 ~/nl/3/D7 

It is clear from Eqs. (13) that the ratio of the interaction energy and kinetic energy 
declines with increasing n according to an n -1/~ law, that is, a p-Z/3 law. 

Unfortunately, even for strongly compressed material, when U~JK ~ 1, and 
a f o r t i o r i  U~JK ~ e2/hvF ~ 1, the problem of superconductivity has not yet been 
definitely resolved. As a matter of fact in a degenerate Fermi gas it is difficult to 
determine the sign of the interaction forces between electrons near the Fermi surface. 
This is also the case for strongly compressed material, since even under such conditions 
a major contribution arises from the interaction of electrons with phonons having 
large momenta (that is, with small wavelengths, comparable to the distance between 
nuclei; a quantitative theory has not yet been developed for short-wave phonons of 
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this kind). If, however,  it  is a t t r ac t ion  tha t  takes place,  then to est imate T~ it  wou ld  
in general  be app rop r i a t e  to use the BCS equa t ion  (9) and  the formulas  ob ta ined  for  
the pa rame te r  g = N ( 0 ) .  V for  s imple models .  The  " je l ly"  mode l  ment ioned  
previously  is more  sui table for  s t rongly  compressed  mater ia l  t han  in o ther  cases, (7) 
for  under  s t rong compress ion  the role o f  t ransverse phonons  and  " u m k l a p p "  processes 
will be suppressed.  F o r  the " je l ly"  mode l  (7) we have 

e 2 ( 8hvF)  
T~ ~ = ~  COor exp - -  - -  ~ 3 • 103p ~/~ exp( - -2 .8p  ~/3) ~ (14) 

]~V F ~Te ~ 

~ f  4zre2zn ~f l  2rre2n COo~ = ~ -  - -  ~ - -  9 • 1 0 2 ~ / n =  4.9 • lOZ4p ~/2sec - t  

h 
vv = ( 3 ~ )  1/a nl/a ~ 3.6nl/a = 2.4 • 10SpZ/3 cm/sec 

m 

/ /  
p = ~ - M  = 3.35 • 10-24n g /cm a 

e 2 
- -  6.1 • 107n-1/z = 0.915p-1/z 

hvv 

(15) 

In  obta in ing  these expressions we have taken  M = 2 Z M ~ ,  where M ,  is the mass o f  
a p ro ton .  In  the case o f  metall ic  hydrogen,  Eq. (14) takes the fo rm 

Tc ~ 5 • lOap 1/~ exp (--3.5pwz) 

The fac tor  preceding the exponent ia l  in Eq. (14) is de te rmined  only to o rder  o f  
magni tude ,  even in terms of  the " je l ly"  model .  But the factor  8/7r in the exponent ia l  
in Eq. (14) is de te rmined  exactly for  the " je l ly"  m o d e l ?  

As  for  the re la t ion o f  form 

k Tc ,~  hCOo~ e-h~e/e2 

this is of  itself very general  in cha rac te ry  N o r  can there ha rd ly  be any d o u b t  that  at  
high densities the cri t ical  t empera tu re  Tc will a p p r o a c h  zero exponent ia l ly  like e -~p~/", 
where c~ is a suitable constant .  

Thus superconduct iv i ty  o f  dense cosmic p lasma,  if  it  does occur,  will essentially 
be found  only in the range o f  densit ies tha t  are  no t  too  high. Accord ing  to Eq. (14), 
for  p = 1, 10, 100, and  1000g/cm 3 we have Tc ~ 200, 10, 10 -4, and  10 - s ~  
respectively. These figures speak quite e loquent ly .  Even i f  the fac tor  preceding the 

6 The formula for N(0) �9 V in the "jelly" model, as given in Reference 6 and used in Reference 12, 
is not accurate and cannot be applied, particularly for Z > 1. 

7 As we have seen above [Eqs. (8) and (9) and the accompanying explanations], g = N(0) �9 V, where 
N(O) = mk~/2~r2h ~ and V is some mean value of the matrix element 4~re~/[q 2 I ~(co, q) l] in the 
attraction region. The change in the momentum hq is in order of magnitude equal to hke = pe = 
mvF, so that g ~ kF 2 I e I h/e~mkr ~ hvF I e ]/e e, where ] e I is a dimensionless quantity. An estimate 
of To for strongly compressed material is also given in Reference 13. 
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exponential were increased by one or two orders (and we see no grounds for this), 
superconductivity still would not  develop for Tc > I~  at densities p ~> 102 g/cm 3. 
A change in the exponential factor  itself would of  course be more  important.  But as 
already mentioned there is no special reason for such a change for p >~ 1, and above 
all one would evidently be concerned only with refining the coefficient of  01/3. As a 
result for p >~ 103 we will always have Tc < I~ in all likelihood, s 

For  temperatures Tc > I~ then, superconductivity would be possible only in 
the density range p ~< 30-100 g/cm 3. Equat ion (14) is even less reliable in this range 
than at higher densities. The density range p ~< 10 g/cm 3 corresponds to ordinary 
metallic superconductors,  and it is well established that the critical temperature here 
by no means depends on the density alone, but  also on the details of  the lattice 
structure, the valance o f  the atoms, and so on. Cosmic conditions would differ f rom 
terrestrial conditions primarily in having a different chemical composit ion for the 
material and a considerably wider range o f  possible densities. Metallic hydrogen may 
serve as a striking example here. 

At  " low"  pressures solid hydrogen will in a certain sense remain molecular and 
will be a dielectric. But at pressures P ~> 106 atm the dielectric phase should be 
t ransformed into a metallic phase through a phase transit ion o f  the first kind. 
At  low temperatures the equilibrium transition takes place a4~ at a pressure 
Pph = 2.4 • 106 atm; the density o f  the metallic phase is pph = 1.1 g/cm 3, 
and the temperature for electron degeneracy is To ~ 4 • 103 ~ The metastable 
metallic phase will possess an even lower density and at low temperatures a trans- 
format ion of  this metastable phase into a stable molecular phase might hardly take 
place at all under  favorable conditions. According to a relation of  the type o f  Eq. (14), 
T~ ~ 150~ for metallic hydrogen;  a similar estimate has been obtained by 
Ashcroft  (ls~ (see also Ref. 43). 

Whether  metallic hydrogen is superconducting or not  remains unknown.  One 
would hope that  before long an answer to this question might be obtained with some 
confidence either through calculations or by experiment. In  fact, stationary pressures 
o f  about  5 • 10 ~ atm have already been achieved in the laboratory,  and it is likely 
that pressures as high as (1.0-1.5) • 106 atm might be attainable. Moreover,  pressures 
up to 107 atm and even higher have been achieved with shock waves.(15~ Unfortunately,  
in work  performed both  with stationary equipment at ultrahigh pressure and 
particularly by the shock-wave method it is very difficult to detect superconductivity 
if the critical temperature is not  too high. The progress in this area is very rapid, ~16) 
however, and the possibilities for investigating the conductivity o f  metallic hydrogen 
at moderate and even at low temperatures seem not  to be merely visionary. 

s It has been claimed ~42) that T~ ~ OD/IO for strongly compressed material, that is, that e -z/g ~ 1/10; 
consequently for n ~ 103o (p > 106 g/cm~), Tc ~ 106 ~ This conclusion seems erroneous to us. 
Apart from referring the reader to a number of papers (6,7,za) where the use of an equation of the 
type (14) is substantiated, we may mention the following. It is the very essence of the problem that 
as the electron charge e approaches zero, that is, if interaction disappears, then superconductivity 
should also disappear. But the result given in Reference 42 does not satisfy this obvious requirement; 
quite apart from the dependence of the Debye temperature 0D on e, it is clear that g = N(0) �9 V -+ 0 
as e --~ 0, since g is a measure of the interaction between electrons. 



Superfluidity and Superconductivity in the Universe t5 

The great planets of the solar system, Jupiter and Saturn, have masses of  
1.9 • 103o g and 0.57 • 1030 g respectively, or 318 and 95 times the mass of the earth. 
The mean densities of  these planets are 1.38 and 0.71 g/cm 3, whereas the mean density 
of the earth is 5.5 g/cm a. At the centers of  Jupiter and Saturn 1~7~ the density reaches 
30 and 15 g/cm 3 respectively. Ashcroft t~81 quotes a value of 5 g/cm 3 for the density 
in the central portion of Jupiter, with a temperature T ~ 100 200~ (see, however, 
Hubbardllg~). As for the chemical composition, hydrogen 371 comprises 78 ~ of the 
mass of Jupiter and 63 ~o of the mass of Saturn. We cannot be certain just how accurate 
all these values are, but in the present case it is of no particular importance. The point 
is that metallic hydrogen (with a considerable admixture of other elements) ought to 
occur in the interiors of  Jupiter and Saturn with densities in the range from p ~ 1 
to p ~ 5-30 g/cm 3 and not too high a temperature. Thus for planets of  this type 
(and there can be little doubt that they would also exist in certain other planetary 
systems) the question of superconductivity is an entirely realistic one even though it 
may be answered negatively. In particular, even if metallic hydrogen were super- 
conducting, the temperature in Jupiter and Saturn might prove to be higher than the 
critical temperature T~ at which superconductivity would disappear. 

The temperature To ~ EF/hk for degeneracy of a Fermi gas is related to the 
concentration n = N/V and density p = nlx~M~ of the gas by the expressions 

(3~)2/~ h2 n~/3 ~ 3 • 10 ~ 
To ~ 2ink 

P0 ~ 6 • 10-9/z~T03/'~ g/cm 3 
(16) 

For hydrogen, helium, and a mixture of heavier stable elements, /z~ = 1, 2, and 2.2 
respectively. I f  p > P0 and T < To (or, strictly speaking, if p >~P0 and T ~ To) the gas 
will be degenerate. For  example, in the sun T~o ~ 107 ~ and p~Q ~ 120 g/cm 3 at the 
center whereas for T O = 107 ~ and/x~ = 2 the density p ~ 400 g/cm 3 {see Greenstein, (2~ 
where Eqs. (16) are used with a slightly different coefficient, which is of  no impor- 
tance}; thus for the sun one cannot speak of degeneracy of the electron gas that 
is at all complete. For cooler main-sequence stars the effects of degeneracy are stronger. 
As we have seen, however, superconductivity phenomena would not be expected for 
compressed material at T ~> 102-103 ~ Thus there is no reason to expect super- 
conductivity for any stars other than white dwarfs. White dwarfs in fact represent 
the final stage in stellar evolution, having a mass M < Met ~ 1.234o (see above 
and References 11, 21, and 22), and as a result they could be cool. In most cases, 
to be sure, white dwarfs will have remained hot, for they will not have been able to 
cool off (the Galaxy and its constituent stars have existed for about 10 billion years; 
white dwarfs have been formed through the evolutionary process of  stars in the 
Galaxy, so that they are younger than the Galaxy itself). Of course the white dwarfs 
that we actually see have not cooled off; furthermore, their surface temperature is 
about 104 ~ higher than for the sun and most other stars (it is for this reason that 
white dwarfs were called "white," as the light they emit is richer in blue and violet 
rays than is the case for yellow and red stars). But the cooling time of a white dwarf 
depends on its mass. As the mass M of the star approaches the critical mass Met ,  



16 V. L, Ginzburg 

the density of the dwarf increases and values of pc ~ 109-101~ g/cm 3 are attained at 
the center of the star (the maximum density prior to the onset of instability depends 
on the composition of the star and certain other assumptions used in deriving the 
equation of state of the material; see References 20-23 and the references cited there). 

For  dense material the Debye temperature 0D rises; it is given by the relation (9,2~ 

2Z [ O ~1/~ 
OD = 1.7 • 106 --~-- \ ~ - !  (17) 

For helium and heavier elements 2Z/A ~ 1 (where A is the atomic weight) and if 
p = 10 l~ g/cm ~ the temperature 0D ~ 2 • 10 ~ ~ whereas for "ordinary" white 
dwarfs with p ~ 106 g/cm 3 the temperature OD ~ 10 G ~ At temperatures T appre- 
ciably lower than OD the specific heat of the material is proportional to T ~ (the Debye 
law) and is considerably lower than the temperature-independent classical specific 
heat, observed for T >~ 0D. It is therefore evident that very dense white dwarfs 
with T ~ 0D will have a relatively small free energy, proportional to T 4. Consequently 
such dwarfs will cool off more rapidly. As a result it is entirely possible that some of 
the densest white dwarfs will already have been able to cool to very low temperatures 
by the present epoch. There will of course be few such stars. It would not be possible 
to observe them by optical means, and naturally no type of observational evidence 
is available for this reason. 

Might there be any way at all to observe cool white dwarfs? This question is 
analogous the one that is naturally posed with regard to other stars--neutron and 
collapsing stars--which it is impossible or very difficult to see in the optical part of 
the spectrum. All such stars could in principle be perceived through thair gravitational 
field; for example, an invisible star belonging to a binary system should influence 
the motion of the other star. In the case of neutron stars, if they are hot enough one 
might hope to detect them from their x rays as well. Finally, if white dwarfs and 
neutron stars oscillate (pulsate) they could be strong sources of radio emission. 

The discovery of pulsars (24-27) was from the very outset related to pulsations of 
this kind in neutron stars or white dwarfs. For a while it seemed that the pulsating- 
dwarf model was preferable, (26-2s) but in October 1968, after some considerably 
shorter oscillation periods had been discovered, (2a,29,~~ the situation changed. 
Apparently the pulsars that we observe represent oscillating and simultaneously 
rotating neutron stars. However, one can hardly exclude the possibility that pulsars 
of another type might exist and be detected, namely, white-dwarf pulsars. This is 
not the place to develop the topic further(27); we merely wish to emphasize that cool 
white dwarfs need not by any means be considered unobservable. 

As is clear from Eq. (14) and the comments already made upon it, even if super- 
conductivity is possible in the central regions of white dwarfs the critical temperature 
would have to be entirely negligible. Superconductivity at T~ ~< 10 z ~ and perhaps 
also at T~ ~< 10 a ~ could in principle be observable in a suitable peripheral envelope 
about a cool white dwarf, somewhere in the density range p ~ 1-100 g/cm s. The 
chemical composition of different white dwarfs might not be the same. A similar 
diversity in composition might also apply to denser white dwarfs. Thus in addition 
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to the density p there is another parameter, the chemical composition, and still other 
parameters might be associated with the type of crystal lattice. 

The presence of superconductivity in one layer of a star would affect the specific 
heat of the layer, its heat conductivity, compressibility, and so on. From the standpoint 
of their influence on the parameters of the star as a whole, these variations are minor, 
but indirectly they could be manifested in various effects, in particular the pulsations 
of the star. This problem has not yet been investigated. We might incidentally mention 
one other very strong effect: even a thin superconducting layer will materially alter 
the magnetic field of a star. a2~ On the other hand, the radio emission of pulsars 
probably is governed to a large extent by the configuration and strength of the 
magnetic field in the stellar atmosphere. ~27,2s~ As a result the presence of super- 
conductivity might significantly, or even radically, influence the radio emission of 
a cool, pulsating, magnetic white dwarf. In the case of Jupiter, the magnetic effect of 
superconductivity might also play some role, (ls~ since this planet apparently possesses 
a magnetic moment. 

In considering the superconductivity of certain regions in white dwarfs and 
planets such as Jupiter and Saturn, however, the most important point now is not 
a discussion of possible consequences of the occurrence of superconductivity, but 
an understanding of the fundamentals--a determination of the critical temperature 
for metallic hydrogen and the other strongly compressed substances (p ~ 1-100 g/cm 3) 
that are encountered in stars and planets. 

5. S U P E R F L U I D I T Y A N D S U P E R C O N D U C T i V I T Y  IN  N E U T R O N  STARS 

As early as the 1930s, soon after the discovery of the neutron and the development 
of the proton-neutron model for the atomic nucleus, the possible formation and 
existence of neutron stars came under consideration (pioneering work in this area 
is cited on page 225 of Reference 11; for further discussion of the properties of neutron 
stars see References 31 and 32). It would have been rather more accurate to speak 
of the neutron core of a star, for matter will consist primarily of neutrons only at 
densities p ~> 1012 g/cm ~. For this reason a neutron core will always be surrounded 
by a kind of "plasma" envelope, a quasineutral mixture of electrons, protons, and 
nuclei. The plasma envelope, particularly for pulsating stars and in view of the 
influence of the magnetic field (for neutron stars it could be colossal; see References 33 
and 34), may far exceed the neutron core in size. At any rate this remark applys to 
the rarefied plasma envelope (corona). But the denser plasma envelope may also be 
quite large, especially for neutron stars of low mass. (e3) Such a star would nevertheless 
be quite different from other stars, so that the term "neutron star" is reasonably 
accurate and definite. 

Many research papers and surveys have been devoted to the theory of neutron 
stars, m'~1,321 Prospects for detecting such stars have been mentioned above. Indeed, 
at this very time, now that it has apparently become possible to identify pulsars with 
oscillating neutron stars, a new chapter in their study has opened up; from hypo- 
thetical objects neutron stars have now become observable celestial bodies. In this 
connection it is particularly important to note that neutron stars should, at 

8221~I~-2 
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least within a portion of their volume, be superfluid, and possible even 
superconducting. 

The conclusion that neutron stars should be superfluid can be drawn from very 
simple considerations (aS~ (the possible superfluidity of the neutron core of a star was 
in fact first pointed out some years before(a6~). It  is known from neutron-scattering 
experiments that two neutrons with antiparallel spins will attract each other, at any 
rate at those distances (for those momenta) which correspond to the Fermi boundary 
in neutron stars (PF = hkF, kF ~< 10 la cm-1). Although this attraction would not 
result in the formation of a stable bineutron, in the case of a degenerate neutron gas 
it should, in accordance with the BCS theory, {5,6~ lead to the "coupling" of neutrons 
and to the formation of  a gap in the energy spectrum of the system. I f  a gap is present 
in the spectrum the neutron fluid should be superfluid, but its superconductivity is 
not in question since neutrons are not charged. 

To estimate the width A(0) of the gap and the corresponding critical temperature 
T~ ~ A(O)/k, we shall use the BCS equation (9). The effective width of the energy 
range within which neutrons will be attracted is equal in order of magnitude to 
E o = kO ~ pFh/M,~a where a ~ 10 -la cm is the range of nuclear forces, M~ ~ M~ 
is the mass of a neutron, and h/a is the characteristic value of the momentum trans- 
mitted in the collision of neutrons. For densities p ~ 1018-10~5 g/cm 3 the energy 
E 0 ~ 5-20 MeV. The density of  states at the Fermi surface is 

N ( O )  = M ~ k F / 2 . ~ h  ~ ~ (O.5--2) x 10 ~ 

The most difficult quantity to estimate reliably is the matrix element of the interaction 
energy V appearing in the BCS formula (9). I f  the interaction of neutrons in the singlet 
state is described by a potential well of depth 15 MeV and width 2.5 • 10 -13 cm, 
then V = J" v(r) dar ~ 2 • 10-4Z It  follows that 

A(O) ~ Eo e -1/W(m'u ~ 1-20 MeV 

p ~, 101a-1015 g/cm a 
0 8 )  

The nuclear density p,~ ~ (2-3) • 1014 g/cm 3, and in this case A ~ 5 MeV, which 
does not conflict with the established findings of nuclear physics. Such a check is 
very important in view of the roughness of  the estimates and the exponential character 
of  Eq. (18). 

A gap A ~ 1-20 MeV corresponds to a critical temperature To ~ 101~ ~ 
which is considerably higher than the "ordinary" temperature of neutron stars. We 
thereby reach the conclusion that these stars are superfluid. 

It  is entirely proper, however, to inquire as to the reliability of  this conclusion. 
As the density of  the neutron fluid drops an increasing number of protons and nuclei 
will appear in it, so that for p < 1012 g/cm a it would be hard to consider our estimate 
as even qualitatively valid. On the other hand, at high densities the interaction between 
neutrons cannot be regarded merely as an interaction between pairs of particles (two- 
particle forces), nor may collisions between neutrons be treated as pair collisions. (av.as~ 
As a result there is reason to believe that for p ~> p~ the gap in the nucleon spectrum 
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will disappear. According to Wolf (~8~ the gap in the neutron spectrum will close at 
a density p = 2 • 1014 g/cm z, which is considered equal to ~-p~. I t  is difficult for 
us to judge how accurate this estimate is. Leaving aside the quantitative aspect of  
the matter, we may evidently consider that in the density range from about 1012 
to (1-3) • 1014 g/cm 3 a gap will be present in the spectrum, with A(0) ~ 1-10 MeV. 9 
As applied to neutron stars, this means that they will contain a superfluid layer for 
T < T~. For  neutron stars of  low mass, with 0.1114o < M < (0.3-0.4)Mo, such 
a layer may reach the center of  the star, thus actually forming a sphere. For more 
massive neutron stars, with (0.3~).4)M o < M < 2M o , the appearance of a non- 
superfluid core in the central portion will be possible, and in fact for M ~> Mo 
highly probable. 

Other particles will also be present in a neutron fuid. I f  we are not concerned 
with the range of exceptionally high densities (p > 3 • 10 t4 g/cm3), protons and 
electrons will be involved, re,s21 At a density p ~ p~ ~ 2 • 1014 g/cm 3, the number 
of  protons will comprise roughly 1 ~ of the number of neutrons. The number of  
electrons will be practically equal to the number of  protons (this is clear f rom the 
requirement that the system be quasineutral, but with the assumption that a significant 
number of  nuclei different f rom protons is absent). For densities p ~< p~ that are not 
too high, neutrons, protons, and electrons in the normal state will, in a sense, form 
three coexisting degenerate Fermi gases (it would be more accurate to speak of 
Fermi fluids; but in this case the distinction is unimportant  since the excitation 
spectrum of a Fermi fluid, or liquid, qualitatively coincides with the spectrum of a 
Fermi gas). The question now arises naturally whether the superfluidity extends not 
only to the neutrons but also to the protons and electrons. Properly speaking, in the 
case of  protons and electrons one might observe superconductivity rather than supe- 
fluidity. For  electrons in neutron stars the density is so high that the gap may be 
considered absent (see Section 4)3 0 As for the protons, at a stellar density 
p ~ p~ ~ 1014 g/cm 3 the density of  the proton "phase 'would  be p~ ~ 101~ g/cm a, 
and superconductivity would not be excluded. Unfortunately, we are not aware 
of  any persuasive estimates on this point (according to Wolf, (as) who emphasizes 
the roughness of the estimate, for p = 0.75p~ the gap is less than 1 MeV, while for 
p > p~ the gap is less than 0.2 MeV.) 

What  role do superfluidity and superconductivity play in neutron stars ? 
The presence of a gap in the spectrum alters the temperature dependence of the 

internal energy, and thereby also such derivative quantities as the specific heat. While 
the specific heat of a Fermi gas is proportional to the temperature (Cn = 7T), for 
the superfluid (superconducting) state the specific heat depends exponentially on T 
(C s ~ e--Zl /kT).  In analyses of  the process  of cooling or heating (such as through 
accretion of matter) neutron stars, the change in the temperature dependence of the 
specific heat plays an important part. It  is perfectly clear that if a gap is present, 

9 It is worth emphasizing that a rigorous proof of the existence of a gap in the neutron spectrum is 
still lacking. The quantitative estimate of A will of course also need to be improved. 

1~ This remark, of course, does not apply to the plasma layer near the surface of the star, where for 
0 ~ 1-100 g/cm 3 and T G 10~-103 ~ superconductivity could in principle be observable. 
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cooling will occur considerably faster, for a given heat dissipation, than for a spectrum 
without a gap. 

A second important effect associated with the presence of a gap concerns the 
resultant change in the rate of the reactions cooling the star, leading to the formation 
of neutrinos and antineutrinos by the reactions 

n + n ~ n + p + e + ~  and n §  

(see References 37-39). Furthermore, the occurrence of a gap in the energy spectrum 
will affect many other quantities and processes, in particular the compressibility, the 
viscosity, and so on. In this connection, for analyses of  the dynamical processes in 
a star, in particular its pulsations, the superfluidity of the star may be very important. 
(We do not refer here to superfluidity effects themselves, because for a massive body 
the critical velocity for superfluid motion should be entirely negligible(3~; but an 
indirect influence from the presence of a large number of the vortex lines that 
occur in a rotating superfluid is entirely possible.) Finally, it is worth emphasizing 
that the superconductivity of a neutron star, or in fact even of a thin layer, may 
substantially affect the magnetic field of the star--its configuration, evolution, and 
so on. Since neutron stars are probably magnetic (they have an appreciable and some- 
times a large magnetic moment; see References 33 and 34 as well as References 27-30), 
this last comment would seem to merit detailed investigation, as would, of course, 
many of the other topics discussed above. 

6. S U P E R F L U I D I T Y  IN A C O S M O L O G I C A L  N E U T R I N O  " S E A "  

Neutrinos are the most penetrating of all known particles, or at any rate of 
particles having half-integral spin (we make this stipulation so as to avoid the problem 
of gravitons). It is in fact impossible to confine neutrinos not only under laboratory 
conditions but even in stellar interiors (except for collapsing stars or the hypothetical 
structures related to them--geons). As a result it might seem that the possibility of 
superfluidity for an aggregate of neutrinos would not be worth any attention or 
discussion. Such a conclusion, however, would not be entirely warranted: the problem 
of superfluidity in a cosmological neutrino "sea"is very definitely of interest. (4~ 

In both isotropic and anisotropic cosmological, models the role of  neutrinos is 
important in certain early evolutionary stages, and in some versions their contribution 
is particularly strong, m,411 In particular, one cannot exclude the possibility that at 
the very time when some of the chemical elements comprising the universe 
were formed, neutrinos (a neutrino "sea") constituted a degenerate Fermi gas. The 
density corresponding to a gas of degenerate neutrinos (or antineutrinos) is given by 

[~ = EF~/8~r2cSh ~ 3 • 103 (EF[MeV]) 4 g/cm 3 (19) 

Here EF is the energy at the Fermi limit and Ee [MeV] is the same energy in MeV. 
On the other hand, in isotropic Friedmann models (that is, in isotropic models 

without the A term) the total density in the early evolutionary stages is 

p = e / c  ~ = 3 / 327rGt  2 ~ (4.5 • 105)/t 2 g/cm ~ (20) 
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where G = 6.67 • 10 -s is the gravitational constant and t is the time (in seconds) 
from the "beginning" of the evolution. Evidently p~ ~< p, so that 

p~,max ~ E~,max/gTr2cSh 2 ~ 3/327rGt 2, EF,max ~ 3 / ~ / t [ ~ ]  MeV (21) 

As is customary, the neutrino gas has above been considered an ideal gas. However, 
if this gas is degenerate it might develop into a superfluid state similar to the super- 
conducting state of  electrons in a metal. A sufficient and probably a necessary con- 
dition for the appearance of such superfluidity is the presence of attraction between 
neutrinos. There can be no doubt that neutrinos 11 do interact somehow with each 
other, but neither the sign nor the order of magnitude of this interaction is yet known. 
One cannot exclude the existence of a "direct" interaction between neutrinos as 
described by a term of the form �89162162162 in the expression for the Hamiltonian 
operator. But if such a "direct" interaction is absent, an analogous term will probably 
appear in the Hamiltonian in higher approximations of  the perturbation theory 
because of the known interaction of neutrinos with electrons or muons. In such an 
event, however, we would be dealing with a divergent expression and it would be 
quite impossible to determine the sign and absolute value of the coefficient ~ with any 
confidence. Moreover, even apart  f rom the origin of  a term of  the type )t~b 4, a rigorous 
solution to the problem of a neutrino field with allowance for this term has not yet 
been obtained. In this connection the ordinary BCS theory has been applied (4~ in a 
formulation where the interaction between particles is described by the Hamiltonian 
�89162 r d~r. But while for electrons in metals the energy of electron "excitation" 
near the Fermi limit has the form ~: = vv(p --  Pc), for neutrinos ~ = c(p --  PF), where 
c is the velocity of  light, PF = hkF is the momentum, and vv = pF/m is the veloc- 
ity at the Fermi surface. Moreover, one should recognize that for a given momentum 
the spin of  a neutrino can have only one direction. 

To find the gap in the energy spectrum of the system, in addition to assuming the 
presence of an attraction between particles near the Fermi energy Er  (this implies 
that in the expression given above A < 0), one should also make definite assumptions 
regarding the width of the energy range within which the attraction occurs. In the 
BCS theory for metals it is considered that the region for attraction is kO = ho~ ~ Ev .  
One then obtains Eq. (9), which we shall here write in the form 

A(O) ~ hco c exp (--rr2ve3h3/2 I )t E EF 2) (22) 

For a neutrino gas we do not know what the attraction region is, if it exists at all. 
But if the BCS theory is applicable in any sense, if  only for orientation, then hco~ ~</iF. 
Assuming that for a neutrino "sea" A < 0, hco~ ~ E~,  and A ~ EF, we obtain 

A(O) ~ E~ exp(--4rr~e~h3/I )~[Er ~) (23) 

Apart  f rom differences in the numerical coefficient, this equation is entirely analogous 
to Eq. (22) with the natural replacement of  vF by c, and of course another value of I )t I. 

az For simplicity we refer only to neutrinos, but all our remarks apply also to antineutrinos. Electron 
and muon neutrinos could also be considered separately, but there is no need to do so in view of 
the character of the discussion in this section. 
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For  metallic superconductors with A/ho~ ~ A/kOD ~ 10 -2 and vF ~ l0 s cm/sec, 
the coefficient ] A ] ~  5 • 10 -3~ erg.  cm a. For  the universal weak interaction, 
] A I ~ 10 -49 erg �9 cm 3. If  we adopt the same value in Eq. (23), then 

In A/EF ~ --10/EF2; 

for example, l n A / E F ~ - 1 0  if E F ~  l e r g ~  106Mev, or p ~ 3  • 1027g/cm a, 
t ~ 10 -1~ sec [see Eqs. (19) and (20)]. The problem of these early evolutionary stages 
of  the universe, if they actually did occur (this depends on the range of applicability 
and character of the cosmological models), is of exceptional interest and at the same 
time remains wholly unclear. For "hot"  cosmological models m~ the neutrino 
degeneracy would be incomplete, or even almost entirely absent. Moreover, for 
p > 10~a-1015 g/cm ~ the equation of state of matter is known only very vaguely. 
On the other hand, the roughness of the calculation and the exponential character 
of  the relation (23), together with the uncertainty of the values of [AE and h~o~, 
prevents us from completely excluding the possibility that the gap in the spectrum 
might be considerable even for E r  ~ 1 MeV (p ~ 3 • 103 g/cm 3, t ~ 10 sec). The 
latter values represent a phase at which, or near which, certain nuclear reactions 
might have taken place and have determined the chemical composition of matter 
in the universe. The presence of a gap in the neutrino spectrum would have affected 
the course of these nuclear reactions. Neutrino superfluidity could in principle also be 
of interest for the hypothetical dense "superstars," in analyses of  their collapse or 
"anticollapse."(m 

Without question any discussion of the problem of superfluidity in the neutrino 
"sea" is somewhat speculative in character. But the problem is a curious one from 
a purely theoretical standpoint, and indeed should not be ignored in considering 
various cosmological models. 

7. C O N C L U D I N G  REMARKS 

We have discussed or mentioned above a variety of possibilities for the occurrence 
of superfluidity and superconductivity under cosmic conditions. All these possibilities 
are of theoretical interest, but two of them are particularly important and relevant in 
a specifically astrophysical context. 

We refer, in the first place, to the superconductivity of strongly compressed 
material (p ~ 1-100 g/cm3), in particular, metallic hydrogen. Material of this kind 
is present in the interiors of Jupiter and Saturn (and of course other similar planets), 
in certain peripheral layers of white-dwarf stars, and of neutron stars that are not 
too hot. At the current stage of development of the theory we can only make a rough 
estimate of the critical temperature T , ,  assuming, however, that superconductivity 
does prevail. The main task is therefore to refine the calculations in an effort to explain 
the conditions under which superconductivity would appear and to obtain a more 
reliable estimate for T~. One cannot exclude the possibility of an experimental 
approach in this direction by obtaining metallic hydrogen and other substances in 
the laboratory with a "cosmic" composition, under pressures greater than 106 atm. 
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Is there any hope of securing information on the superconductivity of strongly 
compressed matter on the basis of  astronomical observations ? Such a possibility 
seems highly unlikely, since the strongly compressed matter is located in the interiors 
of planets or stars. The influence of the superconductivity of  such material upon the 
magnetic field of a planet or a white dwarf  might prove to be significant, but this 
effect would be difficult to observe and would not be very specific in character. In 
other words, in the present instance as in most others, physicists might be of assistance 
to astrophysicists in deciphering complex phenomena, but the reverse would not be 
true. 

The second of the important examples mentioned above is the superfluidity of  
neutron stars, as well as the question of the superconductivity of protons in neutron 
stars. There would seem to be little doubt that superfluidity does prevail in the neutron 
fluid in neutron stars, at least in some rather thick layer of  such a star. How thick is 
the superfluid layer, and what are its parameters ? Answers to these questions should 
come from nuclear physics and f rom calculations of  the equation of state for super- 
fluid nuclear matter. The same remark applies to an analysis of  the problem of the 
superconductivity of  protons in neutron stars. The domain of astrophysics, on the 
other hand, would include calculations of  the cooling rate of neutron stars with 
allowance for their superfluidity and possible superconductivity, as well as various 
caculations concerning the oscillations (pulsations) of  neutron stars and the variations 
in their magnetic field. Now that neutron stars apparently have at last been detected, 
after more than 30 years of  discussion and search, everything associated with such 
stars takes on special interest. The problem of superfluidity and superconductivity in 
neutron stars and related questions will undoubtedly take their place at the forefront 
of  research on these remarkable celestial bodies. 

I t  is a pleasure for the author to take this opportunity to thank L. V. Keldysh 
and D. A. Kirzhnits for discussing a number of  points and for their comments upon 
reading the manuscript. 
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